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The conditions for multiple diffraction due to symmetry have been derived for the Weissenberg 
geometry, for the various crystal systems and for the most commonly used rotation axes. 

The orientation of the crystal with respect to the direction of the incident beam and the nature of 
the rotation axis are the factors responsible for the simultaneous diffraction by symmetry. The values 
of ~ used in the normal-beam, equi-inclination and flat-cone methods determine a symmetrical relation 
between the reciprocal levels and the reflection sphere. Since in the equal-cone method this symmetrical 
relation can be avoided by using a proper value of/~, a conclusion of this paper is that the equal-cone 
method is the most appropriate in intensity measurements. 

Introduction 

In recent years it has been shown (Hay, 1959; O'Con- 
nor & Sosnowski, 1961; Moon & Shull, 1964; Bor- 
gonovi & Caglioti, 1962; Willis & Valentine, 1962; 
Arndt, 1964) that multiple diffraction (Renninger, 1937) 
plays an important role in measuring intensities in 
neutron diffraction work. 

The occurrence of simultaneous diffraction in the 
equi-inclination method has been underlined for the 
first time by Fankuchen & Williamson (1956), and by 
Yakel & Fankuchen (1962). 

Recently, Zachariasen (1965) has shown that: (i) it 
is not in general permissible to neglect the effect of 
multiple diffraction in quantitative intensity work; (ii) 
multiple diffraction is a frequent phenomenon with 
commonly used X-ray techniques. He has found that 
for cubic, tetragonal, and orthorhombic crystals rotating 
about their crystallographic axes, for monoclinic crys- 
tals rotating about [010], and for hexagonal crystals 
rotating about [001], the measurement of the intensities 
of upper layer reflections is made under conditions of 
triple diffraction in the equi-inclination method, and 
of double diffraction in the normal beam method. He 
also illustrated two cases of zero-level reflections subject 
to triple and quintuple diffraction. 

Burbank (1965) has deduced graphically a set of rules 
for determining multiple diffraction in the single-crystal 
orienter and precession techniques for all possible types 
of reciprocal net. 

Fig. 1. Relation between the Cartesian coordinate system and 
the rotation axis of the crystal. 

Jeffery & Whitaker (1965) have emphasized the im- 
portance of taking equi-inclination photographs for 
accurate intensity measurements under conditions of 
single diffraction, and have suggested the deliberate 
mis-setting of the angle of equi-inclination of ca 0.5 ° 
so that the axial reciprocal lattice point, if any, is not 
on the reflection sphere. 

It is the purpose of this paper to find a general con- 
dition for multiple diffraction in the Weissenberg ge- 
ometry in order to find a method of avoiding systematic 
simultaneous diffraction in making intensity measure- 
ments. 

Diffraction condition 

In the Weissenberg methods the crystal is rotated about 
a zone axis [ABC]- V(co-rotation) at a selected value 
of the angle p, where p is defined in the usual way 
(Buerger, 1942) and its origin is chosen so that ~ = 0  ° 
when V is perpendicular to the primary beam; the 
origin of co is arbitrary. 

In order to obtain a general condition for reflection, 
it is convenient to define a Cartesian coordinate system 
X, Y, Z, in the following way: 

(a) The Y axis is coincident with the primary beam. 
(b) The Z axis is perpendicular to Y and lies in the 

plane formed by the primary beam and the rotation 
axis of the crystal, which points from the goniometer 
head to the crystal; the Z axis is coincident with the 
rotation axis of the crystal in the normal-beam method 
(~=0°). 

(c) The X axis is perpendicular to the YZ plane and 
oriented so that right-handed coordinates result (Fig. 1). 

The crystal can be conveniently described in terms 
of three axes P, T, V (and their reciprocals P*, T*, V*) 
obtained from the conventional crystallographic axes 
a, b, c by means of the following index transformation: 

Old (hkl) New (ptv) 

(hlkllx) (100) 
(h2k212) (010) 
(h3k313) (001) 
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where (hlklh) and (h2k212) a re  two crystal planes be- 
longing to the zone [ABC] and (h3k313) is such that 
h3A + k3B+13C=~O.t 

Initially, with the camera set at/z = 09 = 0 °, the crystal 
is mounted on the goniometer arcs so that V is coin- 
cident with Z, P* is coincident with X, and T* lies in 
the X Y  plane with positive Y component. In this con- 
dition, the coordinates x, y, z of a reciprocal point ptv 
are given by (Santoro & Zocchi, 1964): 

x=pP* + tT* cos P*T* + vV* cos P'V*  

y=tT* sin P*T*-vV*  cos TVsin P'V*  (1) 

z=vV* sin TVsin  P ' V * .  

The crystal is then rotated about its V axis at the value 
of the angle/z, appropriate for the method used; there- 
fore, the initial coordinates x, y, z of the reciprocal 
points are transformed in the following way: 

x '  = x cos co + y sin o9 
y ' = ( - x  sin og+y cos o9) cos / z+z  sin/z 
z'=(x sin o~ -y  cos 09) s in /z+z  cos l l .  

(2) 

Reflection takes place when a reciprocal point ptv lies 
on the reflection sphere. If the center of the sphere 
has coordinates x = 0 ,  y = - l ,  z =0,  the condition for 
reflection is: 

x'2+(y' + l)2+ z'2= l 
i.e. d * 2 + 2 y ' = 0  
where d.2 = x,2 +y,2 + z,2. 

By substituting from equation (2), 

2z sin/z + 2(y cos 09- x sin 09) cos/z + d .2 = 0 .  (3) 

The angle/t  is given by: 

sin # = sin v -  v0s 

where v0 is the v index relative to the level under exami- 
nation, s is the period on the rotation axis and v is 
defined in the usual way (Buerger, 1942). 

We can write: 
sin v = ns/2 

where n is an arbitrary number. Therefore 

sin lt=(ns)/2-vos. (4) 

From this rdat ion w~ have 

n = 2v0 sin p = 0 Normal-beam 

n = v0 sin/t  = - VoS/2 Equi-inclination 

n = 0 sin/z = - v0s Flat-cone 

n = constant sin/z = s(n/2) - SVo Equal-cone 

t It  is assumed that the parametral  plane on the new axes 
corresponds to a plane (hokolo) on the old ones, with ho= 
(hi + h2 + h3)/m; ko = (kl + k2 + k3)/m; I0 = (ll + lz + 13)/m where 
m is the highest common factor. 

By substituting (4) in (3) we obtain: 

2zs ( 2 - V o )  + [1-sZ(2  -Vo) 2] 'r 

(2y cos 09 -2x  sin co )+d*2=0 .  (5) 

Equation (5) is the condition for reflection of a recip- 
rocal point valid for a general crystal of any orienta- 
tion and for any Weissenberg method. 

Multiple diffraction and symmetry 

From equation (5) it is easily seen that multiple dif- 
fraction independent of the wavelength is possible only 
if the reciprocal points which reflect simultaneously lie 
on the same vertical net (i.e. on a net coinciding with 
one of the planes formed by the rotation axis and the 
equatorial reciprocal rows), and, in the normal-beam, 
equi-inclination, and flat-cone methods, if the vertical 
net is not oblique. Multiple diffraction occurring on 
non-oblique vertical nets can be called 'by symmetry' .  

One non-oblique vertical net, at least, is present in 
all the possible orientations, except in triclinic crystals 
rotated about any zone axis, in monoclinic crystals 
rotated about [ABC], [0BC], [AB0], [AOC], [100], and 
[001], and in orthorhombic crystals rotated about [ABC]. 
Simultaneous diffraction by symmetry, then, may take 
place also in cases in which the rotation axis does not 
coincide with a symmetry axis of the crystal, or with 
a row of the reciprocal lattice. For example, for an 
orthorhombic crystal rotated about [i 10], simultaneous 
diffraction affects reflections of the class hkO; in fact, 
it can be shown (Fig.2) that the reflection 020 is in 
simultaneous diffraction with 220 and 200 in the nor- 
mal-beam method, the reflection i20 is in simultaneous 
diffraction with 020 and i00 in the equi-inclination 
method, etc. 

Equation (5) can be used to obtain the conditions 
for simultaneous diffraction by symmetry for all the 

Z >fi  
. . . . . . .  

Fig. 2. Net hkO of an orthorhombic crystal rotated about [i10]; 
the circles are the intersections of the reflection sphere with 
the net. 
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possible rotation axes and for any Weissenberg tech- 
nique. For all practical purposes, however, only the 
most commonly used axes need to be considered. 

For monoclinic crystals rotating about [010], ortho- 
rhombic crystals rotating about [100], [010], and [001], 
and for tetragonal and hexagonal crystals rotating 
about [001], all upper layer reflections are measured 
systematically under conditions of triple and double 
diffraction in the equi-inclination and normal-beam 
methods, respectively (Zachariasen, 1965), and of 
double diffraction in the flat-cone method. If v0 is the 
index of the layer under examination and if ptvo is in 
reflecting position, then simultaneous diffraction oc- 
curs with 00v0 and ptO in the equi-inclination method, 
with 00(2v0) in the flat-cone method, and with pt~o in 
the normal-beam method. For hexagonal and tetra- 
gonal crystals rotating about [100] and [010] multiple 
diffraction occurs according to the above general rules, 
except for the hkO reflections for which particular con- 
ditions hold, and, in the case of hexagonal crystals, 
except for general reflections on odd layer lines which 
reflect under conditions of single diffraction in the equi- 
inclination method. Finally, for cubic crystals rotating 
about any zone axis, simultaneous diffraction always 
takes place according to particular conditions. Some 
of these special conditions are given in Table 1 for the 
most commonly used rotation axes and, in the case of 
the cubic system, for the most important classes of 
reflections. 

As an example of the application of equation (5) 
to a particular case, let us consider a primitive tetra- 
gonal crystal rotating about [110]. By choosing (hlklll) 

=(i l0) ,  (h2k212)=(O01); and (h3k313)==-(llO) we have: 
2p = k -  h, t = l, 2v = h + k, and x = [(k - h)a* 1/2]/2, y = 
lc*, z=[(h+k)a*1/2]/2, and s=a*1/2. By substitution 
in equation (5), 

a,2(h+k)  ( n _ 2  ---2 - + - - H + K  h 2 k  ) 

• n H +  K ) 2 ] ~  
+ 2 [ 1 - 2 a ' 2  (2  2 

( k - h  a'1/2 sin o9) x lc* cos ~ -  ~ 

+ (k_____- h___)_) 2a, 2 + 12c, 2 = 0 ,  (6) 
2 

where the index H K L  is referred to the reflection under 
examination and the indices hkl to the reflections in 
simultaneous diffraction. From equation (6), for the 
hkO reflections we have the following condition: 

(K_H)[2(h+k)(n_2H+K____2 . +  h___~_k_k ) + ( k  - h )  2] 

If, for example, ,260 is the reflection under examination, 
then from condition (7) it is found that 360, 350, 630, 
620, 300, 310, 210, 120, 130, and 050 diffract simultane- 
ously in the normal-beam method ( n = H + K ) ,  that 
7440, 2~20, 200, 220, 240, and 060 diffract simultaneously 

( H + K )  and tha t  in the equi-inclination method n -  2 ' 

Cubic 

Hexagonal 

Rotation 
axes 

[100], [010] 
[001]* 

Table 1. Special conditions of  simultaneous diffraction 
Classes of 
reflections Conditions 

Otv to[v(n- 2vo + v) + t2] = t[vo(n- vo) + toZ]t 
pOv po[v(n - 2vo + v) +p2] = p[vo(n - vo) +po2]:l: 
ppv po[v(n - 2vo + v) + 2p 2] =p[vo(n - vo) + 2po 2] 

[111] HHL (L-H) [3(2h+l)(n-2 2H+ L _ ~ _  ] 
3 + + 2(l-  h)2 

=(l-h)[3(2H+L)(n 2H+L3 ~]- + 2(L-  H) z ] 

[100] HKO (2K+ H)[6h(n-2 H -~-- + h )  + (2k+h)Z] 

=(2k + h)[6H (n- -~) + (2K + H) z ] 

[010] 
P \ 

* For [1001 p=k, t=l, v=h 
For [0101 p=l, t=h, v=k 
For [001] p=h, t=k, v=l 

potovo, or HKL, are the indices of the reflection under examination, and ptv or hkl the indices of the points in simultaneous 
diffraction. 

t This condition holds also for tetragonal crystals rotated about [010] 
~ This condition holds also for tetragonal crystals rotated about [100] 
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]40, ]30, ,210, 100, 310, 430, 440, 360, 170, and 070 
diffract simultaneously in the flat-cone method (n = 0). 
The geometrical interpretation of these results is given 
in Fig. 3. 

Equation (6) shows also that for other classes of 
reflections in the normal-beam and flat-cone methods 
diffraction is double, and in the equi-inclination meth- 
od is single for odd layer lines and triple for even 
layer lines. 

In the equal-cone method no conditions of simultane- 
ous diffraction occur for general reflections if the pa- 
rameter n has fractional values and, for special classes 
of reflections, it is possible to find a value of n for 
which the number of reflections affected is very small. 
For example, for a tetragonal or cubic crystal rotating 
about [010] we have for the hkO reflections, 

H [ k ( n - 2 K + k ) + h Z ] = h [ K ( n - K ) +  H2] . (8) 

If 120 is the reflection under examination, for n = ½ ~_00 
and 320 are in simultaneous diffraction, while for n = ½ 
330 and i40 reflect simultaneously; for n =  1/10, how- 
ever, no other reflections satisfy equation (8) and the 
intensity of 120 can be measured in conditions of single 
diffraction• 

For non-primitive Bravais lattices many reflections 
are exempt (except by accident) from multiple diffrac- 
tion. In particular, for C-centred monoclinic crystals 
rotating about [010], orthorhombic C-centered crystals 
rotating about [100] and [010], orthorhombic body 
centered and face centered crystals rotating about [100], 
[010] and [001], and tetragonal body centered crystals 
rotating about [001], reflections on odd layer lines are 
unaffected by multiple diffraction in the equi-inclina- 
tion method. The same is true for tetragonal body 
centered crystals rotating about [100] and [010], except 
for the class hkO. For rhombohedral crystals rotating 
about [111], reflections on layer lines which are not a 
multiple of three are unaffected in the normal-beam, 
equi-inclination and flat-cone methods• For non-prim- 
itive cubic lattices rules of this kind cannot be applied 
because of the higher specialization of the vertical nets, 
and the only consideration which can be made in 
general is that a lower multiplicity of simultaneous 
diffraction is observed in most cases. 

D i s c u s s i o n  a n d  c o n c l u s i o n s  

Multiple diffraction has to be taken into account both 

in intensity measurements and in the determination of 
space groups. 

From the above discussion it is clear that the normal- 
beam, equi-inclination, and flat-cone methods should 
not be used for measuring intensities in all cases in 
which multiple diffraction may introduce significant 
errors. 

There are cases (Renninger, 1937) in which a reflec- 
tion forbidden by the space group may appear because 
of multiple diffraction, and if this is wave-length- 
independent it is not possible to avoid it by changing 

the wavelength. As an example, let us consider the 
case of a cubic crystal of space group P213 (No. 198 
in International Tables) rotating about [010]. The extinc- 
tion conditions for this space group are 

hkl no conditions 
h00, OkO, 001 h, k, l= 2n . 

Reflections 500 and 005 should be absent; however, 
500 is in simultaneous diffraction with 120, 17.0, 420, 
4~_0, and 005 is in simultaneous diffraction with 021, 
021,024, 07-4. Under these circumstances there is the 
obvious possibility of observing one or more of these 
forbidden reflections. 

From the conditions given in Table 1 it is pos- 
sible to derive whether a reflection forbidden by the 
space group can appear because of simultaneous dif- 
fraction. Whenever this happens, experimental con- 
ditions in which multiple diffraction does not affect 
the reflections of interest should be used. 

The main difference between the normal-beam, equi- 
inclination, and flat-cone techniques and the equal- 
cone method is that in the latter the choice of the 
parameter n in equation (5) is arbitrary. This fact makes 
it possible to choose for n fractional values, thus elimi- 
nating the symmetric relation between reciprocal lattice 
and reflection sphere which causes the general condi- 
tions for multiple diffraction in the other methods. 
Therefore, by using the equal-cone method, intensities 
unaffected by simultaneous diffraction can be measured 
also if the crystals are rotated about their crystallo- 
graphic axes. 

It is worthwhile to note that with the normal-beam, 
equi-inclination and flat-cone methods only in a few 
cases the problem might be circumvented by rotating 
the crystal about other crystallographic directions (see 
section on Multiple diffraction and symmetry); however, 
the choice of unusual rotation axes results in a more 
complicated interpretation of the diffraction patterns 
and requires tedious reorientations of the crystal. 

With the two-circle diffractometer and the diffrac- 
tometer in which the counter can be set to record the 

[110] 

. 360 • . . 

a" . z i 3 1 ~ ~  Flat-cone 

/ . 

• / 1 ' ~  I • . / \ \ ~ 6 o  
I f /  / " ~.- / .  ~Equi-incl,nation 

lOOkS//// • ~ ' 2 .~  / ? / NOrmal-beam 

• g T 0 ~ . _ ~ . _ _ . . . . -  ~ 62o  

~09 
Fig. 3. Net hkO of a tetragonal crystal rotated about [110]. 
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upper layers, the intensities are measured with the 
normal -beam geometry and therefore the above con- 
siderations apply to them as well. 

In addit ion to the discussed 2-independent solutions, 
equation (5) may have solutions dependent on the 
wavelength. This type of multiple diffraction may be 
called 'accidental '  and its appearance in a part icular 
case depends on the value of  the wavelength used in 
the experiment. All techniques are affected by this kind 
of mult iple diffraction, whose presence in a part icular 
case can be ascertained by solving equation (5) or by 
a method like the one discussed by Speakman (1965). 
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Dynamieal Diffuse Scattering from Magnesium Oxide Single Crystals 
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Effects of Bragg scattering on the distribution of diffuse scattering from single crystals of magnesium 
oxide have been studied in transmission electron-diffraction patterns. The crystals were in the form of 
thin plates with very uniform thickness. The patterns are explained from a theory which includes both 
Bragg scattering of the diffusely scattered waves (as in ordinary Kikuchi-line theory) and Bragg scatter- 
ing of the incident wave; only single diffuse scattering has been considered, however. 

Fine structure in the Kikuchi-line pattern is shown to depend on the excitation error of the corre- 
sponding reflexions, the amplitude of the fine-structure oscillations increasing as the Bragg condition 
is approached. Also the contribution of the non-oscillating part to the Kikuchi-line contrast was found 
to change with the reflexion condition of the incident beam. In this case the contrast decreases with 
decreasing excitation error of the reflexion. When many Bragg reflexions are strongly excited, as when 
the beam is close to a zone axis, the Kikuchi lines may vanish altogether, leaving a complicated fine 
structure pattern. Reversal of contrast along a Kikuchi line, from excess to defect, may also result 
from Bragg scattering of the incident beam. Effects of three- and four-beam interactions were frequently 
observed, and are discussed for a pattern of weak lines crossing a strong line pair. In addition to bending 
of the lines near intersections, line fragments which cannot be indexed as Kikuchi lines were found; 
these occur at a distance equal to a reciprocal lattice vector from an ordinary Kikuchi line, and are 
related to the Kikuchi envelope. In observation of Kikuchi bands it was found that, when the line pair 
was symmetrically disposed about the central spot, the individual Kikuchi lines were asymmetric, with 
the deficient part of the band profile inside the line pair. The contrast of these lines is discussed and is 
related to the interference form factor, (f(s)f*(s + h)). 

Introduction 

The purpose of this paper is to present and discuss 
some dynamical  effects in patterns of diffuse scattering 
from magnesium oxide single crystals; that is, effects 

* Present address: Department of Physics, University of 
Oslo, Blindern, Norway. 

t On leave from The Research Institute for Iron, Steel and 
Other Metals, Tohoku University, Sendal, Japan. 

due to dynamical  interactions with the Bragg scat- 
tering. Some of the patterns can be described as the 
transmission Kikuchi-l ine patterns which are explained 
in terms of  a simple geometrical consideration given 
by Kikuchi ;  in others the excitation of Bragg reflexions 
by the incident beam leads to fine structure effects and 
contrast changes in Kikuchi  lines which must  be 
explained from the more complete theory of inter- 
actions between Bragg scattering and diffuse scattering. 


